
Natural Language Processing basics

3/7/2024

NLP approaches

- Empirical Statistical
 - Machine Learning Corpora
 - Unsupervized
 - + Annotation Supervized
 - Vector space models; Word embeddings
 - Neural Networks
 - Shallow parsing
- Rationalistic Grammar-based
 - Parsing
 - Knowledge-based
 - Ontologies
 - Knowledge graphs

3/7/2024

Junichi Tsujii; Natural Language Processing and Computational Linguistics (2021) https://doi.org/10.1162/coli_a_00420 3

Linguistics – the science that studies natural language

- Phonetics and phonology
- Morphology lexicons
- Syntax grammars
- Semantics knowledge bases, ontologies, semantic spaces, embeddings
- Pragmatics and discourse

Grammars (Syntax)

- Regular, Context Free, Context Dependent, General (Chomsky's hierarchy)
- Dependency
- GPSG
- HPSG
- LFG
- (L)TAG

Corpus linguistics

- Empirical approach (based on datasets, not on rationalism)
- Based on corpora
- It may or not use computational techniques
- Introduced by John Sinclair (without NLP)

Corpus-Corpora

Oxford Text Archive

Oxford Text Archive A repository of full-text literary and linguistic resources. Thousands of texts in more than 25 languages. Collection(s) of Important notice: November 2021 naturally-occurring content). The OTA will therefore not be taking any new deposits until further notice language text, chosen Q to characterize a state Advanced Search or variety of a Subject Date range Great Britain (11821) 2000-present (39) Broadsides (4897) 1900-1999 (611) language. Sermons, English (4029) 1800-1899 (829) Bible. (3156) 1700-1799 (7353) England and Wales. (2169) 1600-1699 (22656) (John Sinclair, 1991) Church of England (2146) 1500-1599 (2965) Society of Friends (1801) 0-1499 (297)

Catholic Church (1623)

https://ota.ox.ac.uk/documents/creating/dlc/chapter1.htm (c) Stefan Trausan-Matu

BCE (142)

3/7/2024

Bodleian Libraries UNIVERSITY OF OXFOR

CLARIN

Collections

Online

Core Collection

Early English Books Online (Phase 1)

Early English Books Online (Phase 2)

Evans Early American Imprints

Jonathan Swift Archive

Legacy Collection

OTA Guides

ECCO - Eighteenth Century Collections

The Bodleian Libraries are currently undertaking a review of the Oxford Text Archive, including its policies, technologies and content (both textual content and contextual website

About OTA

Electronic Enlightenment

7

Zipf's law – law of corpora

- A corpus of general text should satisfy a number of constraints, for example, Zipf's law (<u>https://www.youtube.com/watch?v=fCn8zs912OE</u>), which is specific to any language
- Other constraints should be satisfied
- It is an instance of a power law (Barabasy), which reflect natural properties of social networks and phenomena (e.g. the number of friends in a social networks) (c) Stefan Trausan-Matu

Types of corpora

- Raw vs annotated
- Speech vs text
- General vs. specific
- Parallel corpora

3/7/2024

(c) Stefan Trausan-Matu

Examples of general language corpora

- British National Corpus (BNC)
 <u>http://www.natcorp.ox.ac.uk/</u>
- Corpus of Contemporary American English (COCA)
 <u>https://corpus.byu.edu/coca/</u>
- Open American National Corpus (OANC)
 <u>http://www.anc.org/</u>
- CoRoLa Corpus de referință pentru limba română contemporană <u>http://89.38.230.23/corola_sound_search/</u>

For various NLP learning tasks are many corpora (textual datasets)

See the Linguistic Data Consortium - https://www.ldc.upenn.edu/

3/7/2024

(c) Stefan Trausan-Matu

Text structuring

- Tokenization (at the level of words)
- Bracketing (syntactical structures)
- Text segmentation
- Coreference resolution
- Discourse
- Rhetoric schema identification

Text annotation (in corpora)

- Syntactic
 - Part of speech ex. noun, verb, ...
 - "Bracketing" syntactical structures
 - Treebanks parsing trees
- Semantic senses for words
- Pragmatic
 - Anaphoric annotation
 - Speech act annotation
- Discourse
- Rhetoric

3/7/2024

Annotation languages

- SGML
- XML

TEI (Text Encoding Initiative - <u>https://tei-c.org/</u>)

• Others

Machine learning with corpora

- Hidden Markov Models
- Naïve Bayes
- Support Vector Machines
- •
- Neural Networks

Deep Neural Networks for NLP

Natural Language Processing with Deep Neural Networks

- Convolutional Neural Networks
- Recurrent Neural Networks (RNN)
 - Long Short-Term Memory (LSTM)
 - Bi-directional LSTM
 - Gated Recurrent Units (GRU)
 - Enconder-Decoder
 - Enconder-Decoder with Attention
- Transformers (Bert, GPT-2, GPT-3, GPT3.5, GPT4, ChatGPT...)

Natural Language Generation with Deep Neural Networks

• Deep Neural Networks

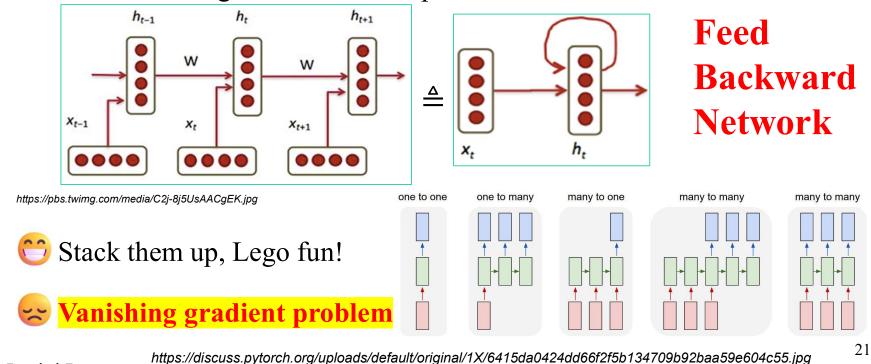
– For example, ChatGPT

- Training with a corpus of literature
- Generating new texts in the "style" of the learned corpus

Pre-processing for DNN

- Tokenization
- Embedding

Language specific features considered in NLP with DNN

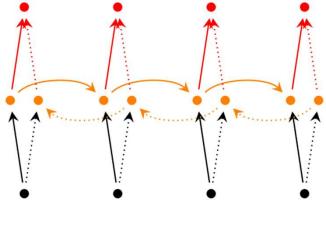

- Syntactic structures, meaning (semantics and pragmatics), and discourse are statistically learned from raw corpora
- Time sequencing
- Long distance dependencies

Recurrent Neural Networks (RNNs)

Main RNN idea for text:

Condition on all previous words

Use same set of weights at all time steps $h_t = \sigma(W^{(hh)}h_{t-1} + W^{(hx)}x_t)$



Ismini Lourentzou

3/7/2024

Bidirectional RNNs

Main idea: incorporate both left and right context output may not only depend on the **previous** elements in the sequence, but also **future** elements.

 $\vec{h}_{t} = \sigma(\vec{W}^{(hh)}\vec{h}_{t-1} + \vec{W}^{(hx)}x_{t})$ $\vec{h}_{t} = \sigma(\vec{W}^{(hh)}\vec{h}_{t+1} + \vec{W}^{(hx)}x_{t})$ $y_{t} = f\left(\left[\vec{h}_{t}; \vec{h}_{t}\right]\right)$ past and future around a single token

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorialpart-1-introduction-to-rnns/

two RNNs stacked on top of each other $_{3/7/2024}$ output is computed based on the hidden state of both RNNs $\left[\vec{h}_t; \vec{h}_t\right]$ Ismini Lourentzou

22

Long-Short Term Memory (LSTM)

- a special kind of RNN, capable of learning long-term dependencies
- some information is forgoten

Gated Recurrent Units (GRUs)

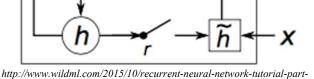
Simpler case of LSTM

Main idea:

keep around memory to capture long dependencies

Allow error messages to flow at different strengths depending on the inputs

Standard RNN computes hidden layer at next time step directly $h_t = \sigma(W^{(hh)}h_{t-1} + W^{(hx)}x_t)$

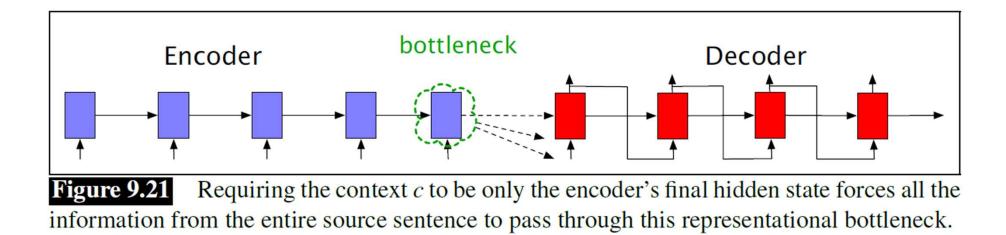

Compute an update gate based on current input word vector and hidden state

$$z_t = \sigma(U^{(z)}h_{t-1} + W^{(z)}x_t)$$

Controls how much of past state should matter now

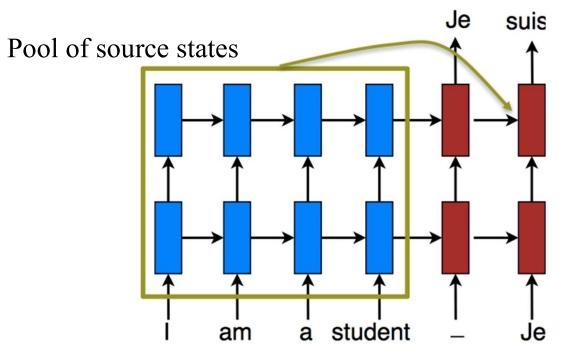
If z close to 1, then we can copy information in that unit through many steps!

3/7/2024 Ismini Lourentzou



http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/

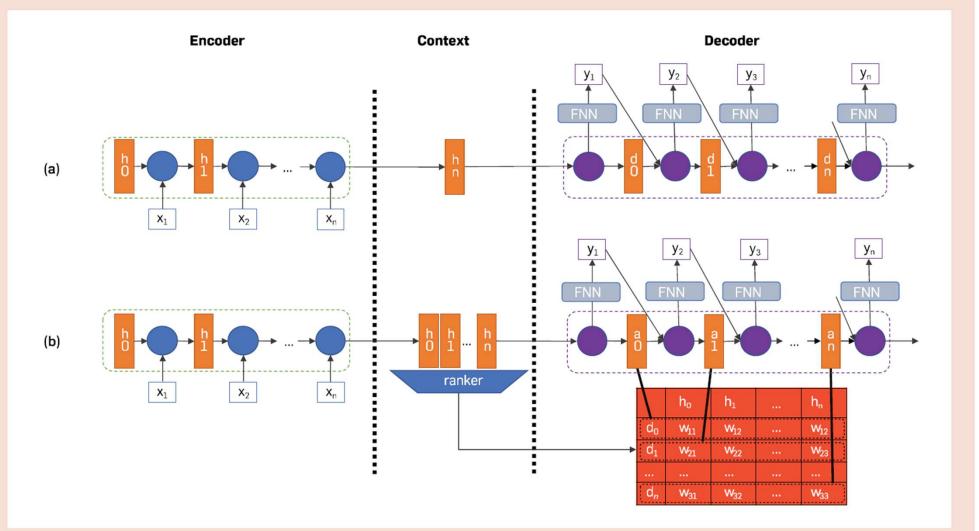
Sequence2Sequence or Encoder-Decoder model



Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." EMNLP 2014

(Jurafsky & Martin, 2024)

Attention Mechanism


Bahdanau D. et al. "Neural machine translation by jointly learning to align and translate." ICLR (2015)

Main idea: retrieve as needed

3/7/2024

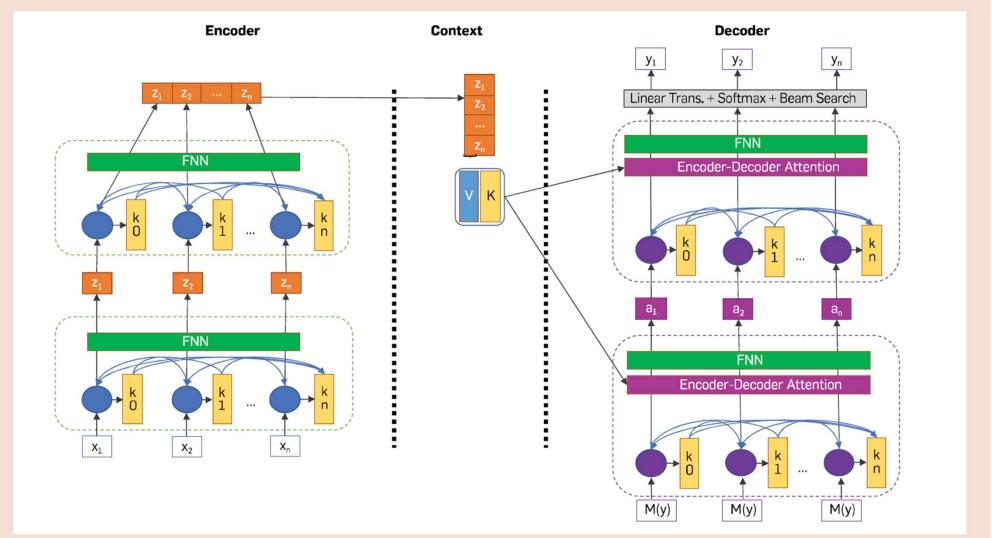
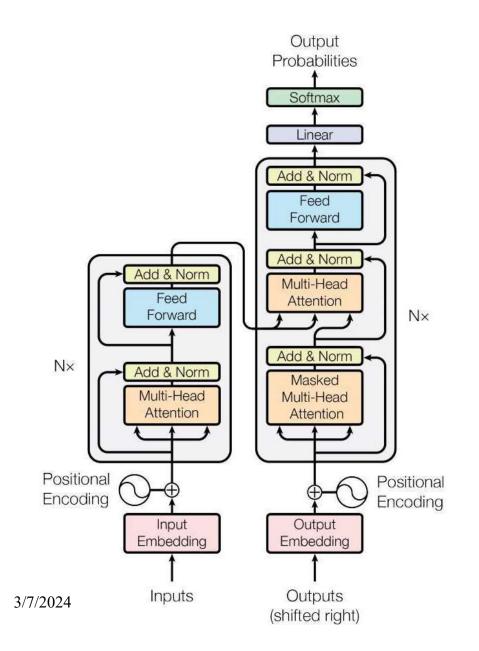
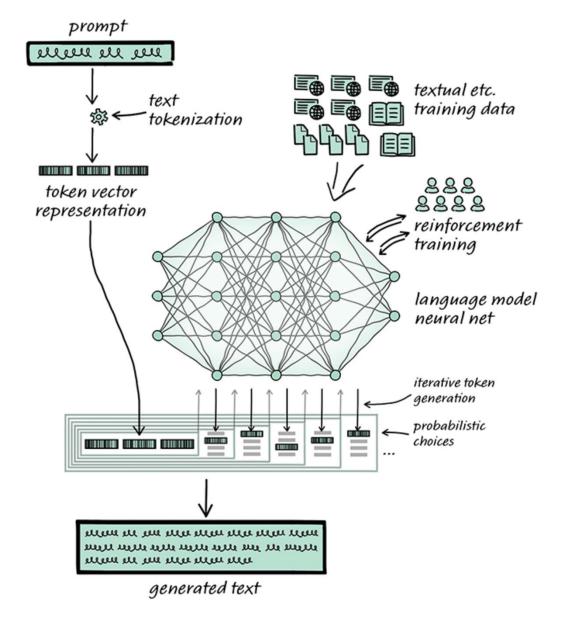

Ismini Lourentzou

Figure 1. Difference between encoder-decoder methods (a) without and (b) with attention. Notice that the circles represent the same set of weights changing at different timesteps.



(Souza dos Reis et al, 2021, https://cacm.acm.org/research/transformers-aftermath/)

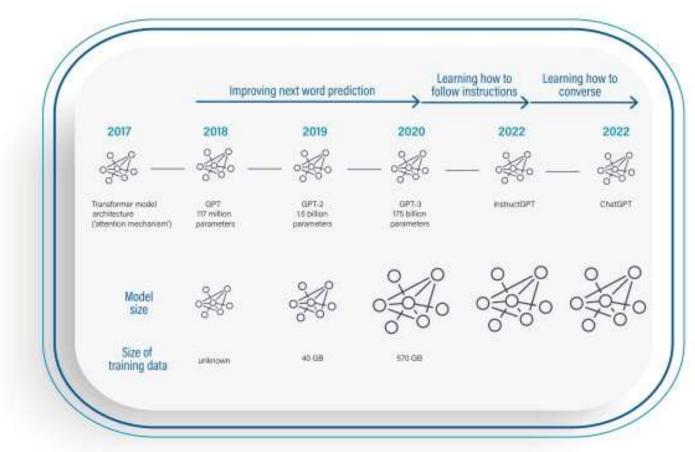
Figure 2. An example of Transformers composed of two encoders and two decoders. Notice that the decoders receive the context—projected in two vectors *v* and *k*—from the topmost encoder.



(Souza dos Reis et al, 2021, https://cacm.acm.org/research/transformers-aftermath/)

Attention is all you needs!

Transformer


ChatGPT (Chat Generative Pretraining Transformer)

Is a Large Language Model (LLM)

https://writings.stephenwolfram.com/2023/01/w olframalpha-as-the-way-to-bring-computationalknowledge-superpowers-to-chatgpt/

3/7/2024

Evolution of Large Language Models (ChatGPT)

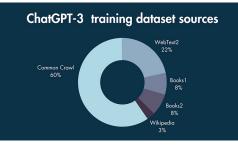
https://sitn.hms.harvard.edu/flash/2023/the-making-of-chatgpt-from-data-to-dialogue/

ChatGPT has a number of neurons comparable to a human brain

- 100 billion neurons
- over 100 layers
- 100 trillion synapses

https://medium.com/@fenjiro/chatgpt-gpt-4-how-it-works-10b33fb3f12b3/7/2024

Human Brain - 100 billion neurons and 10× more glial cells.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776484/

Training of ChatGPT

- Some ChatGPT commentators have estimated that if ChatGPT was to be trained on a single NVIDIA Tesla V100 'Graphics Processing Unit' (GPU) that it would take around 355 years to complete ChatGPT's training on its training dataset.
- OpenAl reportedly used 1,023 A100 GPUs to train ChatGPT, so it is possible that the training process was completed in as little as 34 days.
- The costs of training ChatGPT is estimated to be just under \$5 million dollars.

https://lambdalabs.com/blog/demystifying-gpt-3

Training of ChatGPT

- 60% of ChatGPT-3's dataset was based on a filtered version of what is known as 'common crawl' data, which consists of web page data, metadata extracts and text extracts from over 8 years of web crawling.
- 22% of ChatGPT-3's dataset came from 'WebText2', which consists of Reddit posts that have three or more upvotes.
- 16% of ChatGPT-3's dataset come from two Internet-based book collections. These books included fiction, non-fiction and also a wide range of academic articles.
- **3%** of ChatGPT-3's dataset comes from the Englishlanguage version of Wikipedia.
- **93%** of ChatGPT-3's data set was in English

https://arxiv.org/pdf/2005.14165.pdf

3/7/2024