LECTURE 10

BOGDAN ICHIM

Classification with Non-linear Decision Boundaries

Note: We discuss a general mechanism for converting a linear model into a non-linear
model.

(1) Enlarge the feature space using quadratic, cubic or higher-order polynomial func-
tions of the predictors:

Xl, X2 — Xl, XIQ, XQ, XQQ, XlXQ, .
(2) Train the support vector classifier in the enlarged feature space.

Example: X;, X, — X, X2, X5, X2. Our problem of finding Max M suffers the follo-
wing transformation:
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F1cURE 1. Transformation while finding Max M
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The Support Vector Machine

Main Idea: Enlarging the feature space in a specific way that leads to efficient compu-
tations using kernels.

The support vector classifier is given by Hg where 3(x) = o + > o, Bii.

Assume that z;,7 = 1, N is a set of generators for RP as a vector space = Jay,7 = 1, N
such that (0, ..., 5,) = Zfil T =

5($):50+<(ﬁ17 75]0 50‘1‘ Zazm ﬁO—i_Zaz :Eza

In order to solve the optimization problem which gives the support vector classifier, that
is to estimate the parameters o;,7 = 1, N and [y, we only need the (g]) scalar products
(x;, ;) between all pairs of training observations.

Moreover, it turns out that a; # 0 only for the support vectors:

= Bo + Zal x;,x),where S C N

€S

So all that we need are the scalar products!
We can replace them each time they appear in the computation.
Kernel = function which is a generalization of the scalar product.

Examples:

(1) The usual scalar product in R?:

:Ena :Em E LnjTmj

(2) Polynomial kernel of degree d:
P
K(zp,zy) =1+ Zavnjmmj)d,

where d € N* is the tuning parameter.
(3) The radial kernel:
K (2, &) = €725 00 —0ms)?,

where 7 > 0 is the tuning parameter.

The classifier given by:
() = o + Z o K(x;, x)
€S
is called a support vector machine.
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Remark 1. Using kernels one needs only to compute K(x,,z,,) for all distinct (N

nels. 2)
distinct pairs (n,m) in 1, N without working explicitly in the enlarged feature space =
faster computations.
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FIGURE 2. Left figure: polynomial kernel. Right figure: radial kernel

Multi-Class SVM Classsifier

Assume that the number of classes K > 2. We have two possibilities:

One-vs-One Classification:

- We consider all possible pairs of classes, thus (2( ) pairs. We then construct (12() SVMs,
each comparing a pair.

- We classify a test observation using each classifier and we assign it to the class that wins
the most pairwise classifications.
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Remark 2. This is very similar to the Condorcet majority vote!

Example: k =3 = (g) = 3 SVMs
Let A, B, C be the classes and (A|B), (B|C)

, (C|A) the SVMs.
What if (A|B)(z) = B, (B|C)(z) = C, (C|A)(x)

= A,
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FIGURE 3. An instance of Condorcet paradox

One-vs-All Classification:

We fit K SVMs, each time comparing one class to all remaining K — 1 classes, so we get
K classifiers:

Je(x) = Bor + Z aik(ri, ),k =1, K

1L ESE

and we set fy(z) > 0 for z in the k™ class. Then we assign a test observation x to the
class k for which fi(z) is the largest.

Support Vector Regression
(Extension of SVM for Regression)

Main Idea: Minimize only residuals larger in absolute value than some positive constant.



